terça-feira, 19 de setembro de 2017

Pontos limites de espirais áureas de um retângulo áureo são vértices de retângulo áureo interior

Limit points of golden spirals of a golden rectangle are vertices of inner golden rectangle

Por Lohans de Oliveira Miranda (UFPI) e Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)
By Lohans de Oliveira Miranda (UFPI) and Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)

Resumo - Sabemos que a partir de um retângulo áureo podemos construir quatro espirais áureas que convergem para quatro pontos limites distintos, os quais formam um retângulo. O que não sabíamos era que este retângulo, interior ao inicial, é áureo.
Abstract - We know that from a golden rectangle we can construct four golden spirals that converge to four distinct limit points, which form a rectangle.  What we did not know was that this rectangle, inner to the initial, is golden rectangle.

PROPOSIÇÃO. OS QUATRO PONTOS LIMITES DAS QUATRO ESPIRAIS ÁUREAS DE UM RETÂNGULO ÁUREO SÃO VÉRTICES DE UM RETÂNGULO ÁUREO. ALÉM DISSO, A ÁREA DESTE É UM QUINTO DA ÁREA DO RETÂNGULO ÁUREO INICIAL.
PROPOSITION. THE FOUR POINTS LIMITS OF THE FOUR GOLDEN SPIRALS OF GOLDEN RECTANGLE ARE VERTICES OF A GOLDEN RECTANGLE. IN ADDITION, THE AREA OF THIS IS A FIFTH OF THE AREA OF THE INITIAL GOLDEN RECTANGLE.

Prova. A figura 1 abaixo representa um retângulo áureo, sendo 𝛗 = (1+√5)/2, o número de ouro. Seja P o ponto de intersecção dos segmentos de comprimentos respectivamente iguais a AB e CD. É sabido que P é ponto limite da espiral áurea OQR. Outros três pontos limites podem ser obtidos a partir de outras três espirais, as quais podem ser obtidas de OQR  por rotação de 180°. O retângulo que tem estes quatro pontos limites como vértices tem o lado maior igual a (2+3𝛗)(1+3𝛗)¹a-[a+𝛗¹a-(2+3𝛗)(1+3𝛗)¹a] e o lado menor igual a a-2𝛗(1+3𝛗)¹a. Portanto, o quociente entre o lado maior e o lado menor é igual a 𝛗. 
Proof. Figure 1 below represents a golden rectangle, where φ = (1+√5)/2, is the golden number. Let P be the point of intersection of the segments AB and CD. It is known that P is the limit point of the golden spiral OQR. Another three limit points can be obtained from three other spirals, which can be obtained from OQR by 180° rotation. The rectangle that has these four limit points as vertices has the largest side equal to (2+ 3φ)(1+3φ)⁻¹a-[a+φ⁻¹a-(2+3φ)(1+3φ)⁻¹a] and or smaller side equal to a-2φ(1 + 3φ)⁻¹a. Therefore, the quotient between the largest and the smallest side is equal to φ.



O quociente entre o lado menor do retângulo inicial e o lado menor do retângulo interior é igual a a/[a-2𝛗(1+3𝛗)⁻¹a]=2𝛗-1=√5.  isto indica um fator de redução igual a 1/√5. Logo, o quociente entre a área do retângulo áureo inicial e a área do retãngulo áureo interior é igual a (2𝛗-1)⁻¹=5.
The quotient between the smaller side of the initial rectangle and the smaller side of the inner rectangle is equal to a/[a-2φ(1+3φ)⁻¹a]=2φ-1=√5. This indicates a reduction factor of 1/√5. Therefore, the quotient between the area of the initial golden rectangle and the area of the inner golden rectangle is equal to (2φ-1)⁻¹=5.

Consequências imediatas: na construção de cada uma das quatro espirais áureas há a construção de uma sequência de retângulos áureos. Pelo resultado que acabamos de ver, no interior de cada um dos retângulos áureos desta sequência existe uma sequência de retângulos áureos encaixados, tal como ocorre no princípio dos intervalos de Cantor. E todos estes retângulos áureos são construíveis via régua e compasso. Qual é a medida e a dimensão do conjunto formado por estes pontos limites de espirais? Como eles se distribuiríam em todo o plano? E se adicionarmos a este conjunto os vértices dos demais retângulos áureos construíveis a partir da elaboração das espirais, como deverão ser respondidas corretamente as perguntas acima? Além disso tudo, as quatro espirais podem se estendidas, visto que seus pontos limites são também origens de novas espirais, de modo que as junções destas estensões são curvas que convergem para o centro do retângulo áureo inicial.
Immediate consequences: On the construction of each of the four golden spirals there is the construction of a sequence of golden rectangles. From the result we have just seen, within each of the golden rectangles of this sequence there is a sequence of golden rectangles in decreasing chain by inclusions. And all these golden rectangles are buildable by ruler and compass. What is the measure and the dimension of the set formed by these limit points of spirals? How would they be distributed throughout the plan? And if we join to this set the vertices of the other golden rectangles that can be constructed from the elaboration of the spirals, how should the above questions be answered? Moreover, the four spirals can extend, since their limit points are also the origins of new spirals, so that the junctions of these spirals are curves that converge towards the center of the initial golden rectangle. 

Nota: acabamos de ver uma bela e didática exposição anterior de Jeffrey R. CHASNOV (https://www.youtube.com/watch?v=jMFv0MRmEuo).

Notas de Estruturas Algébricas 2017.1

Primeira Nota:
Tamires da S Gomes 9,0
Edney Laurindo 9,0
Bruno V da Costa 9,0

Antonio dos Passos 9,0
Francisca Daniele 9,0
Jéssica Santos 9,0

Andresa Kelly Coutinho 9,8
Railton R Alves 9,8
Pedro Duarte 9,8

Mateus Portela 9,0
Dalton Francisco 9,0
Ticiano Sousa 9.0

Ananda Luisa 9,1
Franklin de Sousa 9.1
Marcos Vinícius 9,1

Idalina 9,2
João Alves 9,2
Marcos Antonio 9,2

Leonardo Lima 9,2
Akira 8
Layla Bruna 7,6
_______
Segunda Nota:
Mateu Portela 9,0

Ananda Luisa 9,5
Jéssica Maria 9,5
Marcos Antonio 9,5
Tamires Gomes 9,5

Leonardo Lima 9,5
Layla Bruna 9,5
João Alves 9,5
Antonio dos Passos 9,5
Idalina Marques dos Santos 9,5
Marcusa Vinicius Odorico O Nogueira 9,5
Akira 9,5

Andressa Kelly 10,0
Railton Rodrigues 10.0
Dalton Francisco S 10.0
Edney laurindo Alves 10,00
 Bruno da Costa 10.0
Franklin de Sousa 10.0
Pedro Duarte 10,0
Ticiano Sousa 10,0
Francisca Daniele 10,0

Quaisquer dúvidas comuniquem pelo e-mail lossianm@gmail.com

segunda-feira, 18 de setembro de 2017

O Brasil e a Coréia do Norte

Não é novidade que a Coréia do Sul é muito mais avançada do que o Brasil em termos tecnológicos e educacionais. Mas por incrível que pareça, a Coréia do Sul estava atrás do Brasil nestes ítens há poucas décadas. Fizeram investimentos racionais e honestos, sem "propinocracia". Sabemos que neste campo a Coréia do Norte enfrenta maiores dificuldades. Mas a pergunta é: já estaria a mesma à frente do Brasil? Alguém pode achar que ela é desenvolvida só em armas atômicas. Mas a verdade é que país nenhum fabrica bomba de hidrogênio  e mísseis balísticos intercontinentais sem investimento em tecnologia e educação. Neste momento, a Coréia do Norte está tentando imitar sua irmã univitelina, implantando um programa de doze anos de escola obrigatória para os seus cidadãos. Se o plano for bem sucedido, brevemente todos os cidadãos nortecoreanos terão curso superior. Quando isto ocorrer, a unificação estará bem mais próxima e poderá haver uma nova Alemanha dentro no sudoeste asiático.

Notas de ADS 2017.1

Primeira nota:
L A Vieira:             8,9
L A Lima:              9,5
M F N Bisneto:      9,5
Luana Aragão:       9,5
João Emerson:       9,5
J A R Mendes:       9,5
A de A V Filho:     8,9
G S da Silva:          9,1
J Santana:               9,1
M Pimentel:           9,1
F V O e S Junior:   9,1
Paulo Roberto:       9,5
Vinicius Tomaz:     9,5
Micael Leal:           9,5
F Neiva:                 9,5
J Adad:                   9,5
D Messias:             9,5
R Souza:                8,9
J V L da Silva:       8,8
H Junior:                9,2
M T P das Neves:  9,1
L Coelho:               9,1
F Daniel:                9,1
F M S Vaz:             9.0
L Fabrício O M:     9,0
A W da Silva:        9.0
G R da S Souza:     9,0
________________
Segunda nota:
Paulo Roberto:        9,5
Vinicius Tomaz:      9,5
Micael Leal:           9,5
F Neiva:                  9,5
J Adad:                    9,5
D Messias:              9,5
Antonio Aquino      9,3
Francisco Valberio  9,3
J A Rodrigues          9,3
Bruno daeshan        9,3
Luis F O M             9,3
L A Vieira               9,3
A Hamilton Gomes  9,3
Arlan Icaro V M     9,3
F M S Vaz               9,2
Hipólito Junior        9,1
Rodrigo Souza        9,0
J V L da Silva        8,9
M de S Pimentel     9,1
Guilherme Sousa    9,1
Josel Santana          9,1
Luana Aragao         9,1
Joao Hermerson      9,1
Marcos Ferreira      9,1
Maria T P das Neves  9,0
Antoniel Wiliam     8,9
Laécio A Lima        9,0
__________
Terceira nota (da prova):
Jose Vinicius 8.5
Laecio A 8,5
Gabriel Rodrigues 8,5
Hipolito R 8,5
Rodrigo Sousa 8,5

Antonio de Aquino 8,4
Guilherme Sousa 8,4
Jose Afonso 8,4
Francisco Valberio 8,4
Joao Hermerson 8,4

Luis Fabricio 8,5
Antoniel Wiliam 8,5
Arlan Icaro 8,5
Lucas Coelho 8,5
Francisco Daniel 8,5

Marcos Ferreira   8,7
Joel Santana 8,7
Luana Aragao 8,7
Marlon Pimentel 8,7
Darshan Bruno 8,7

Daniel Messia  9,0
Paulo Roberto 9,0
Micael Leal 9,0
Jesus Adad 9,0
Filipe Vilanova 9,0
Vinicius Tomaz 9,0

Maria Trindade 8,7
Leandro Araujo 8,7
Antonio Hamilton 8,7
Francisco Michael 8,7

Quaisquer dúvidas, enviem e-mail para lossianm@gmail.com




domingo, 17 de setembro de 2017

General Mourão

Não se fala noutra coisa: as palavras do general Mourão. Ecoou pelo Brasil todo. Me lembro que Osmar Serraglio (este um homem honesto, um pedaço de diamante que pode ser mergulhado na merda e depois volta limpinho) no Mensalão relatou tudo muito bem direitinho. Naquele momento a classe política poderia ter resolvido o problema das propinagens, feito a reforma política correta e se preservado como aristocracia no país. Mas nada fizeram. Optaram pela insegurança política deles mesmos. Alguns já estão bem processados ou presos e não têm nem mesmo garantias mínimas de tranquilidade financeira para os descendentes. Optaram pela segurança momentânea sem jamais pensarem que fortunas mal construídas geram problemas. Jamais leram Aristóteles, não sabem que pode existir aristocracias, tal como ocorre há milênios em muitos países. É uma desgraça uma situação destas. Antes, a preocupação era descobrir os cleptocratas. Agora a coisa evoluiu. A preocupação é se é possível prendê-los. E as pressões continuarão, até que as aproximações sucessivas do general (a linguagem dele foi matemática!) resolvam a parada. Espero que fique só nas aproximações sucessivas mesmo, pois é o meu conhecido método antifontiano das "vizinhanças enumerativas indutoras de causalidade". É importante a parte filosófica de sua mensagem.

Seu José Baptista Sobrinho volta ao serviço

Acabo de ver o vídeo https://www.youtube.com/watch?v=vg9yeriEJzA

Seu José voltou a trabalhar dentro das perspectivas que sempre o animou. Como ele mesmo disse, quando os meninos entraram a empresa cresceu, mas dentro de um mundo diferente. Ele volta, com a unanimidade da aceitação dos sócios. O que eu não sabia é que tudo começou em Formosa de Goiás, terra natal de minha primeira aluna. Danusa era o nome dela, e recebia aulas de matemática, pois ia fazer concurso para aluna-pianista no principal conservatório de Moscou. Era, tal como seu Zé, de origem mineira, com forte sotaque. Tornou-se minha aluna através de um russo, o qual trabalhava junto à antiga embaixada soviética. Eu estudando e dando aulas, e o seu Zé enricando. Espero que ele conserve a sua fortuna e que a empresa seja algo bom para todos nós brasileiros.

quinta-feira, 14 de setembro de 2017

JOESLEY LIA OS PENSAMENTOS DAS PESSOAS?

Joesley e Saud falam de sua conversa como a de bêbados. Mas as conversas deles, mesmo bêbados, valem muito para desenrolar este novelo de linha da política nacional. Eu seria capaz de escrever o resto da vida sobre as repercussões políticas e não políticas daquela interessante conversa. Começo pela parte que ninguém até agora se interessou: Joesley lê ou não, o pensamento, a alma das pessoas? Muitos metidos a espertos dirão que isto é impossível, mesmo acreditando totalmente no resto da conversa de Joesley. Mas vejam que Joesley apenas descreve uma vivência, algo real para ele, uma experiência mental acerca da qual dúvida alguma existe sobre a sua existência. Ele julga que lê o pensamento das pessoas, a alma das pessoas. Que de algum modo, tem esta habilidade. Eu também acredito que Joesley adquiriu esta habilidade e assim digo pela razão de saber que o corpo humano desenvolve habilidades não usuais quando suficientemente exercitado. Ninguém mais do que Joesley neste Mundo labutou tanto com tantas pessoas dissimuladas. E ele não era apenas um observador, ele era parte essencial e interessada. A cada tratativa, a cada negócio que fazia, tinha que melhorar a sua observação. O subconsciente de Joesley aos poucos, sem que ele próprio notasse, o tornou hábil em perceber o não dito a partir do dito, tal como fazem os matemáticos, que calculam todos os valores de uma função analítica num conjunto a partir dos valores da fronteira deste mesmo conjunto. Sabendo o que ocorre na casca, sabe-se o que ocorre no miolo. Era isto o que Joesley fazia dentro do mundo dos negócios no qual atuava. Na matemática, já descobrimos a explicação para esta mágica. Mas a psicologia ainda é uma arte e, Joesley, um artista. Enquanto labutou com gente, Joesley teve o controle da situação, não ocorrendo o mesmo com o gravador, que nem alma tem.