Limit points of golden spirals of a golden rectangle are vertices of inner golden rectangle
Por Lohans de Oliveira Miranda (UFPI) e Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)
By Lohans de Oliveira Miranda (UFPI) and Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)
Por Lohans de Oliveira Miranda (UFPI) e Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)
By Lohans de Oliveira Miranda (UFPI) and Lossian Barbosa Bacelar Miranda (IFPI, lossianm@gmail.com)
Resumo - Sabemos que a partir de um
retângulo áureo podemos construir quatro espirais áureas que convergem para
quatro pontos limites distintos, os quais formam um retângulo. O que não
sabíamos era que este retângulo, interior ao inicial, é áureo.
Abstract - We know that from a golden rectangle we can construct four golden spirals that converge to four distinct limit points, which form a rectangle. What we did not know was that this rectangle, inner to the initial, is golden rectangle.
Abstract - We know that from a golden rectangle we can construct four golden spirals that converge to four distinct limit points, which form a rectangle. What we did not know was that this rectangle, inner to the initial, is golden rectangle.
PROPOSIÇÃO. OS QUATRO
PONTOS LIMITES DAS QUATRO ESPIRAIS ÁUREAS DE UM RETÂNGULO ÁUREO SÃO VÉRTICES DE
UM RETÂNGULO ÁUREO. ALÉM DISSO, A ÁREA DESTE É UM QUINTO DA ÁREA DO RETÂNGULO ÁUREO INICIAL.
PROPOSITION. THE FOUR POINTS LIMITS OF THE FOUR GOLDEN SPIRALS OF GOLDEN RECTANGLE ARE VERTICES OF A GOLDEN RECTANGLE. IN ADDITION, THE AREA OF THIS IS A FIFTH OF THE AREA OF THE INITIAL GOLDEN RECTANGLE.
PROPOSITION. THE FOUR POINTS LIMITS OF THE FOUR GOLDEN SPIRALS OF GOLDEN RECTANGLE ARE VERTICES OF A GOLDEN RECTANGLE. IN ADDITION, THE AREA OF THIS IS A FIFTH OF THE AREA OF THE INITIAL GOLDEN RECTANGLE.
Prova. A figura 1 abaixo
representa um retângulo áureo, sendo 𝛗 = (1+√5)/2, o número de ouro. Seja P o ponto de
intersecção dos segmentos de comprimentos respectivamente iguais a AB e CD. É
sabido que P é ponto limite da espiral áurea OQR. Outros três pontos limites
podem ser obtidos a partir de outras três espirais, as quais podem ser obtidas
de OQR por rotação de 180°. O retângulo que tem estes quatro pontos
limites como vértices tem o lado maior igual a (2+3𝛗)(1+3𝛗)⁻¹a-[a+𝛗⁻¹a-(2+3𝛗)(1+3𝛗)⁻¹a] e o lado menor igual a
a-2𝛗(1+3𝛗)⁻¹a. Portanto, o quociente
entre o lado maior e o lado menor é igual a 𝛗.
Proof. Figure 1 below represents a golden rectangle, where φ = (1+√5)/2, is the golden number. Let P be the point of intersection of the segments AB and CD. It is known that P is the limit point of the golden spiral OQR. Another three limit points can be obtained from three other spirals, which can be obtained from OQR by 180° rotation. The rectangle that has these four limit points as vertices has the largest side equal to (2+ 3φ)(1+3φ)⁻¹a-[a+φ⁻¹a-(2+3φ)(1+3φ)⁻¹a] and or smaller side equal to a-2φ(1 + 3φ)⁻¹a. Therefore, the quotient between the largest and the smallest side is equal to φ.
O quociente entre o lado menor do retângulo inicial e o lado menor do retângulo interior é igual a a/[a-2𝛗(1+3𝛗)⁻¹a]=2𝛗-1=√5. isto indica um fator de redução igual a 1/√5. Logo, o quociente entre a área do retângulo áureo inicial e a área do retãngulo áureo interior é igual a (2𝛗-1)⁻¹=5.
The quotient between the smaller side of the initial rectangle and the smaller side of the inner rectangle is equal to a/[a-2φ(1+3φ)⁻¹a]=2φ-1=√5. This indicates a reduction factor of 1/√5. Therefore, the quotient between the area of the initial golden rectangle and the area of the inner golden rectangle is equal to (2φ-1)⁻¹=5.
Consequências imediatas: na construção de cada uma das quatro espirais áureas há a construção de uma sequência de retângulos áureos. Pelo resultado que acabamos de ver, no interior de cada um dos retângulos áureos desta sequência existe uma sequência de retângulos áureos encaixados, tal como ocorre no princípio dos intervalos de Cantor. E todos estes retângulos áureos são construíveis via régua e compasso. Qual é a medida e a dimensão do conjunto formado por estes pontos limites de espirais? Como eles se distribuiríam em todo o plano? E se adicionarmos a este conjunto os vértices dos demais retângulos áureos construíveis a partir da elaboração das espirais, como deverão ser respondidas corretamente as perguntas acima? Além disso tudo, as quatro espirais podem se estendidas, visto que seus pontos limites são também origens de novas espirais, de modo que as junções destas estensões são curvas que convergem para o centro do retângulo áureo inicial.
Immediate consequences: On the construction of each of the four golden spirals there is the construction of a sequence of golden rectangles. From the result we have just seen, within each of the golden rectangles of this sequence there is a sequence of golden rectangles in decreasing chain by inclusions. And all these golden rectangles are buildable by ruler and compass. What is the measure and the dimension of the set formed by these limit points of spirals? How would they be distributed throughout the plan? And if we join to this set the vertices of the other golden rectangles that can be constructed from the elaboration of the spirals, how should the above questions be answered? Moreover, the four spirals can extend, since their limit points are also the origins of new spirals, so that the junctions of these spirals are curves that converge towards the center of the initial golden rectangle.
Nota: acabamos de ver uma bela e didática exposição anterior de Jeffrey R. CHASNOV (https://www.youtube.com/watch?v=jMFv0MRmEuo).
Proof. Figure 1 below represents a golden rectangle, where φ = (1+√5)/2, is the golden number. Let P be the point of intersection of the segments AB and CD. It is known that P is the limit point of the golden spiral OQR. Another three limit points can be obtained from three other spirals, which can be obtained from OQR by 180° rotation. The rectangle that has these four limit points as vertices has the largest side equal to (2+ 3φ)(1+3φ)⁻¹a-[a+φ⁻¹a-(2+3φ)(1+3φ)⁻¹a] and or smaller side equal to a-2φ(1 + 3φ)⁻¹a. Therefore, the quotient between the largest and the smallest side is equal to φ.
The quotient between the smaller side of the initial rectangle and the smaller side of the inner rectangle is equal to a/[a-2φ(1+3φ)⁻¹a]=2φ-1=√5. This indicates a reduction factor of 1/√5. Therefore, the quotient between the area of the initial golden rectangle and the area of the inner golden rectangle is equal to (2φ-1)⁻¹=5.
Consequências imediatas: na construção de cada uma das quatro espirais áureas há a construção de uma sequência de retângulos áureos. Pelo resultado que acabamos de ver, no interior de cada um dos retângulos áureos desta sequência existe uma sequência de retângulos áureos encaixados, tal como ocorre no princípio dos intervalos de Cantor. E todos estes retângulos áureos são construíveis via régua e compasso. Qual é a medida e a dimensão do conjunto formado por estes pontos limites de espirais? Como eles se distribuiríam em todo o plano? E se adicionarmos a este conjunto os vértices dos demais retângulos áureos construíveis a partir da elaboração das espirais, como deverão ser respondidas corretamente as perguntas acima? Além disso tudo, as quatro espirais podem se estendidas, visto que seus pontos limites são também origens de novas espirais, de modo que as junções destas estensões são curvas que convergem para o centro do retângulo áureo inicial.
Immediate consequences: On the construction of each of the four golden spirals there is the construction of a sequence of golden rectangles. From the result we have just seen, within each of the golden rectangles of this sequence there is a sequence of golden rectangles in decreasing chain by inclusions. And all these golden rectangles are buildable by ruler and compass. What is the measure and the dimension of the set formed by these limit points of spirals? How would they be distributed throughout the plan? And if we join to this set the vertices of the other golden rectangles that can be constructed from the elaboration of the spirals, how should the above questions be answered? Moreover, the four spirals can extend, since their limit points are also the origins of new spirals, so that the junctions of these spirals are curves that converge towards the center of the initial golden rectangle.
Nota: acabamos de ver uma bela e didática exposição anterior de Jeffrey R. CHASNOV (https://www.youtube.com/watch?v=jMFv0MRmEuo).